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SUMMARY

Wireless communication simulations are generally conducted using one-dimensional models for large-scale
fading. While simple and with low computational costs, these models cannot produce correlated fading
values for mobiles that are in nearby positions. To overcome this limitation, this paper presents a novel
bi-dimensional large-scale fading model which introduces the spatial correlation present in real systems.
Besides, it is also able to model the non-negligible cross-correlation among signals coming from different
sites. Copyright © 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

As the complexity of wireless communication systems
increases, the use of simulation tools to obtain initial
assessments of system performance is becoming increas-
ingly common. To conduct accurate and valid studies, a
careful selection of the simulation models is required. The
development and inclusion of precise large-scale fading
models in simulation studies is an important issue. This
fading effect, hereinafter referred to as either slow fading or
large-scale fading, can significantly affect the dynamics of
the signal variation at the receiving unit and, consequently,
the coverage area and received signal quality.

Several experimental studies have shown that the statis-
tical distribution of large-scale fading can be approximated
by a lognormal law (e.g. [1]). To consider the spatial
correlation properties of slow fading, Gudmundson [1]
suggested a one-dimensional model of its autocorrelation
function. Although this model has been extensively used in
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wireless communications testbeds and simulation studies,
it is limited in the sense that it independently considers
the slow fading for each mobile unit. This approach results
in the large-scale fading experienced by receiver units that
are in close vicinity to each other being uncorrelated, even
if their surrounding obstacles are identical. As observed
in different measurement campaigns (e.g. [2,3]) such lack
of correlation does not happen in real networks. This
observation is illustrated in Figure 1 for the measurements
reported in [3]. Figure 1(a) shows two different urban
paths followed in the measurement campaign realised
within the framework of COST 231. Figure 1(b) illustrates
the obtained slow fading values for both routes between
the points A and B. As it can be observed, both
measurement series, though taken in different moments,
exhibit very similar slow fading values, hence highlighting
the previously mentioned spatial correlation and reinforcing
the need to model it. One possible way of doing so is through
bi-dimensional maps, as considered in this paper.
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Figure 1. Slow fading experienced by two different mobiles connected to the same site (b) and moving from A to B along
routes in (a).

Besides, neglecting the slow fading spatial correlation
present in wireless systems could result in significantly
underestimating the performance of techniques that
strongly depend on the radio link quality conditions
(e.g. soft handover, macro-diversity or link adaptation)
[4]. A proposal to overcome this limitation consists in
generating bi-dimensional slow fading using methods based
on sums of sinusoids [5]. However, this approach exhibits
certain limitations in terms of spectral properties [6]. As
a result, the work herein reported presents and analyses a
different approach to generate correlated large-scale fading
values.

Another aspect of slow fading modelling that is
usually neglected is cross-correlation of signals transmitted
from different base stations. Such cross-correlation effect,
also highlighted in different measurement campaigns
(e.g. [2,7]), is due to the fact that the random
component of propagation loss consists of the sum of
two components: one resulting from obstacles in the
vicinity of the mobile unit and a second one from the
specific surroundings of each base station. As a result,
the fading phenomena affecting different signals received
by a user from different base stations experience some
correlation.

In this context, this paper presents a new bi-dimensional
large-scale fading model capable of representing both
spatial correlation and site-to-site cross-correlation that
characterise the slow fading phenomenon. This model has
been adopted within the reference scenarios for UMTS
in the European Network of Excellence in Wireless
Communications (NEWCOM).

2. LARGE-SCALE FADING MODEL

2.1. Mathematical description

Propagation loss experienced by the signal transmitted from
base station i and received by a mobile unit can be expressed
in decibels as:

Li(t) = L̄i(t) + Li
SH(t) + Li

FF(t) (1)

where L̄i(t), Li
SH(t) and Li

FF(t) represent path loss, slow
fading and fast fading, respectively.

The work reported in [1] established that the slow fading
spatial autocorrelation can be expressed as a function of the
distance shift �r and a decorrelation distance ddecorr:

R (�r) = e
− ln 2|�r|

ddecorr = 2
− |�r|

ddecorr (2)

To consider the slow fading correlation in the bi-
dimensional Cartesian coordinate system used to represent
slow fading maps, (2) can be converted to:

R (�r) = R (�x, �y) = 2
−

√
�x2+�y2

ddecorr (3)

The influence of the surrounding environment over the
large-scale fading results in the slow fading experienced
by signals transmitted from different base stations and
received at a single mobile station exhibiting some
correlation. In particular, if we consider two base stations
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(i, j) such cross-correlation can be expressed as [7]:

Rij (0) =
E

[
Li

SH (t) · L
j

SH (t)
]

√
E

[
Li

SH (t)2] · E
[
L

j

SH (t)2
] = ρij > 0 (4)

where ρij typically has values between 0.3 and 0.5 [7].

2.2. Generation of cross-correlated slow fading
between different radio links

The slow fading experienced by signals transmitted from a
set of n base stations to a point (x, y) can be modelled as a
set of n Gaussian random variables. It is assumed that these
variables have the same standard deviation σSH. To make
sure that these variables exhibit the cross-correlation present
in real systems, the slow fading generation process has to
ensure that for each pair of them (4) is valid for a given
set of values {ρij}. In this work, a fixed cross-correlation
coefficient ρ is assumed for any pair of base stations, that
is ρij = ρ for any pair (i, j).

A simple and computationally fast solution for the stated
problem is to generate n + 1 independent random Gaussian
variable {G0, G1 . . . Gn} with zero mean and standard
deviation equal to σSH. From these values, the slow fading
experienced by the signals transmitted from each base
station i can be generated as follows:

Li
SH = √

ρ · G0 +
√

1 − ρ · Gi (5)

With this approach, G0 represents the common,
receiver-position-dependent slow fading component while
Gi models the base-station-dependent component. (5)
guarantees that the slow fading generated Li

SH follows
a Gaussian distribution with zero mean and standard
deviation equal to σSH. On the other hand, the cross-
correlation factor between any pair (i, j) of slow fading
values is equal to

Rij (0) = E[Li
SH · L

j

SH]

σ2
SH

= E
[
ρ · G2

0

]
σ2

SH

= ρ (6)

given that G0, Gi and Gj are independent random variables
with zero mean.

The same procedure as represented by (5) could be
repeated for each geographic location at which the slow
fading should be generated. As a result, (5) can be

rewritten as:

Li
SH (x, y) = √

ρ · G0 (x, y) +
√

1 − ρ · Gi (x, y) (7)

2.3. Generation of spatially correlated slow fading

The procedure represented by (7) to generate slow fading
maps does not guarantee yet the spatial correlation that
mobiles experience.

The generation of slow fading maps verifying (3) can
be performed using different methodologies. One possible
approach to generate spatially correlated slow fading maps
was reported in [5]. However, this procedure requires
complex computations so as to select the sample frequencies
needed to obtain valid approximations of the autocorrelation
function. This paper proposes an approach consisting in
applying a bi-dimensional filter to the slow fading maps
previously generated using the procedure described by (7).

Generating random and independent slow fading samples
produces ‘white’ slow fading, characterised by a null
autocorrelation for non-zero spatial shifts. In order to
introduce the auto correlation properties described by
Equation (3), bi-dimensional filtering can be applied as
follows. Let term a(x, y) the spatially uncorrelated slow
fading map described by (7) and b(x, y) the desired spatially
correlated slow fading map. a(x, y) is considered as the
filter’s input and b(x, y) as the filter’s output, which can
be expressed in the frequency domain as:

B
(
fx, fy

) = A
(
fx, fy

) · H
(
fx, fy

)
(8)

with H representing the frequency response of the filter that
needs to be designed.

For white slow fading, the two-dimensional Fourier
transform of the input slow fading map is flat. As a result,
(8) can be rewritten as:

B
(
fx, fy

) = k · H
(
fx, fy

)
(9)

The slow fading map a(x, y) is characterised by
its autocorrelation function being non-zero only at the
coordinate system’s origin. Consequently, its power spectral
density is:

Saa
(
fx, fy

) = σ2
a (10)
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Now, the power spectral density of b(x, y), given that the
filter frequency response is known, can be obtained as:

Sbb(fx, fy) = Saa(fx, fy) · |H(fx, fy)|2

= σ2
a · |H(fx, fy)|2 (11)

However, in our case Sbb
(
fx, fy

)
is known, since it is

the Fourier transform of the bi-dimensional autocorrelation
function (3). As σ2

a is also known, we can easily obtain
the Fourier transform of the filter impulse response h(x, y)
as the square root of Sbb(fx, fy)/σ2

a . After performing
an inverse Discrete Fourier Transform, the definitive filter
impulse response that verifies the slow fading variance
properties requires normalising as follows:

h̄ (x, y) = h (x, y)√
E

[
(h (x, y) − E|h (x, y)|)2] (12)

Once the filter is defined, the next step consists in applying
it to the original slow fading map a(x, y) that verifies (7).
This process results in the final slow fading map including
both spatial and site-to-site cross-correlation.

3. VALIDATION OF THE PROPOSED MODEL

Figure 2 compares the slow fading autocorrelation function
(AF), along the first path considered in the COST
231 measurement campaign, for: measurements collected
in the campaigns reported in [3], bi-dimensional maps
proposed in this paper (2D), one-dimensional model from
[1] (Gudmundson) and one-dimensional model from [8]

Figure 2. Comparison of the slow fading AF.

(Kim). It can be observed that, in all cases, the AF
of the different models match fairly well with the AF
measurements.

The proposed 2D slow fading model has also been
compared to that proposed in [5]. For that purpose, the
same configuration parameters have been considered. In
particular, the slow fading standard deviation has been set
to 1 dB and a correlation of 0.5 has been assumed for a
distance of 7.5 m (these parameter values have been chosen
merely to enable a fair and direct comparison between
both models). The site-to-site slow fading cross-correlation
factor has been set to 0.5. With the proposed 2D model, the
achieved autocorrelation function average squared error
with respect to the Gudmundson model is equal to 5 × 10−5,
which is two orders of magnitude lower than the best
performance obtained in [5].† These values demonstrate
that the 2D model outperforms the sum-of-sinusoids model
reported in [5]. In terms of computational complexity,
our approach requires calculating one Inverse Fast
Fourier Transform more than [5], but it does not require
performing either Monte-Carlo simulations or sum of
sinusoids.

In terms of the cross-correlation, (6) already demon-
strates the validity of the implemented model. However,
simulations were conducted to obtain the Probability
Density Function (PDF) of the cross-correlation factor for
all the points of several bi-dimensional large-scale fading
maps corresponding to different base stations. The obtained
PDF exhibits a narrow distribution around the target value
of 0.5, which further validates the implemented cross-
correlation model.

4. SYSTEM-LEVEL EFFECT

To demonstrate the importance and need to develop accurate
large-scale models, such as the one reported in this paper,
this section analyses the impact of different models on
a system’s performance. To conduct this investigation,
a powerful GPRS simulation platform modelling radio
transmissions at the burst level has been used [9]. This
simulation platform also emulates the operation of Link
Adaptation (LA), an adaptive Radio Resource Management
(RRM) technique that selects the most suitable transport
mode (modulation and coding scheme) according to the

† The model proposed in [8] achieves very similar AF average square
error values as the model proposed in this paper. However, our model
considers bi-dimensional scenarios whereas the model in [8] is limited to
one-dimensional scenarios.

Copyright © 2007 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2008; 19:101–106
DOI: 10.1002/ett



BI-DIMENSIONAL LARGE-SCALE FADING MODELLING 105

Table 1. Simulation parameters.

Parameter Value

Cluster size 4
Cell radius 1 km
Sectorisation 120◦

No. of modelled cells 25
(wrap-around)

Slots per sector 16
Users per sector 16
Traffic type H.263 video: 6 users/sector; WWW:

6 users/sector; E-mail: 4 users/sector
Pathloss model Okumura-Hata
Vehicular speed 50 km/h
LA updating period 20 ms

experienced channel quality conditions. The inclusion of
LA has been considered as a suitable case study since its
operation and performance can be significantly influenced
by the channel quality variations and, therefore by the
implemented radio channel models. The main simulation
parameters are summarised in Table 1.

To demonstrate the importance of employing accurate
large-scale fading models to conduct system-level studies,
this section compares the performance obtained with
the following three models: lognormal large-scale fading
model with one-dimensional spatial correlation [1],
bi-dimensional large-scale fading maps with spatial
correlation but without site-to-site cross-correlation and
bi-dimensional large-scale fading maps with spatial and
site-to-site cross-correlations (a fixed 0.5 site-to-site cross-
correlation has been considered). Figure 3 compares the
system throughput performance obtained considering the
three different slow fading models.

Figure 3. System throughput cumulative distribution function.

The figure clearly shows that using simple large-scale
fading models results in an important underestimation of
the system-level performance that could be obtained when
employing LA. Such underestimation is a consequence of
neglecting the inherent spatial and site-to-site correlation
present in the large-scale fading. Since LA bases its
transport mode selection on the experienced channel quality
conditions, its operation is improved when such conditions
are correlated. The results shown in Figure 3 also highlight
that the spatial correlation has a more important effect on the
system’s performance than the modelled site-to-site cross-
correlation.

The obtained results and previous observations are
confirmed when analysing the percentage of data blocks
transmitted using the optimal coding scheme according to
the LA algorithm. When considering the large-scale fading
model based on a bi-dimensional map including spatial and
site-to-site cross-correlation, this percentage increases by
9.5% as compared to when large-scale fading is modelled
using the one-dimensional lognormal model. The number
of coding scheme changes per second also provides an
indication on how well is LA adapting to the experienced
channel quality conditions. The use of a bi-dimensional map
including spatial and site-to-site cross-correlation results
in a 23% reduction in this parameter compared to when
using the one-dimensional lognormal model. These results
further demonstrate that simple slow fading models are
not able to properly capture the inherent spatial correlation
properties present in real systems, which can result in a
considerable underestimation of the system performance of
adaptive radio interfaces.

5. CONCLUSIONS

This paper has presented a novel bi-dimensional large-
scale fading model that is able to consider not only
the spatial correlation characteristic of the slow fading
phenomena but also the non-negligible cross-correlation
between signals transmitted from different base stations.
The proposed approach, based on two-dimensional filtering
of 2D random slow fading maps, has been shown to exhibit
good spectral properties. This paper has also shown that
large-scale fading models can have a significant impact on a
mobile’s system performance, particularly when employing
adaptive RRM techniques. Consequently, accurate slow
fading models, such as the one proposed in this work,
should be considered to appropriately conduct system-level
investigations.
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